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Convergence of Mayer Expansions 
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The tree graph bound of Battle and Federbush is extended and used to provide 
a simple criterion for the convergence of (iterated) Mayer expansions. As an 
application estimates on the radius of convergence of the Mayer expansion for 
the two-dimensional Yukawa gas (nonstable interaction) are obtained. 

KEY WORDS: Mayer expansion; Yukawa gas; iterated mayer expansions. 

1. I N T R O D U C T I O N  

This paper is largely a pedagogical exercise arising from my attemps to 
understand some recent work by Benfatto (1) on the two-dimensional 
Coulomb gas, where for the first time a direct proof  of convergence of the 
Mayer expansion for a system, where the interaction is not classically 
stable, is given. "Direct" means as opposed to Ref. 2, which involves 
detours through cluster expansions from constructive field theory. 

Mayer expansions have played an important  role in the last few 
years.(3 5~ The work by G6pfert  and Mack on permanent  confinement in 
the three-dimensional U(1) gauge theory (5) largely rested on their success 
in improving estimates on the convergence of the Mayer expansion. In this 
paper I have taken ideas from Ref. 1 and combined them with estimates by 
Battle and Federbush (6) to arrive at a simple condition (see Theorem 2.2) 
for convergence of the Mayer expansion. Theorem 2.2 implies many of the 
results of Benfatto and G6pfert  and Mack. Theorem 2.2 rests on some 
estimates of independent interest which are also presented in Section 2. 

There are by now many accounts of the standard theory of Mayer 
expansions. The "classical" reference is Ref. 7. A recent review using 
notation compatible with this paper is given in Ref. 8. 
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2. NOTATION A N D  RESULTS 

Consider a system with grand canonical partition function 

Z = ~ o ~ .  , d'~(~,,...,~u)e ~ < ' ' ~  (2.1) 

where/~ is a measure on a space f2, p(s < Go. d/~ lumps together summing 
over species with integration over position. V is a two-body potential 

1 
V({,,..., { n ) = ~  ~ v({~, ~j) (2.2) 

i # j  

Assume that v is a sum of potentials (possibly different types of interactions 
or interactions on different scales) so that 

~(~, ~')= ~ v(K~(~, ~') 
x=0 (2.3) 

V(~I ,..-, ~N)= ~, v(K)(~I,'", ~N) 
K--0 

(absolute convergence, a.e. d#). Each v (x) is symmetric in its arguments. 

Example 2.1. The Yukawa gas. There are two species, charges +_ I, 
with activity z which are confined to a box A c R2: 

1 Z = E ~.  E d Nxe- V(Xl'8l . . . . . . .  N,gN) 
el,... ,eN= •  N 

v 

where Q = R 2 •  dl~({)=(zxAdx)• 
measure on { - 1 ,  1 }), ZA is the characteristic function of the box A: 

1 V(~I,"', ~N)~'~-2~ E g;gj(1-A) '(x;, xj) (2.4) 
;#j 

fl > 0 is inverse temperature. The symbol (1 - d )  1 is defined by 

(1 - -A)- t (x ,  Y)=(-~)2 d2k e;~ {x-Y) 

( 1 -  A) -1 can be decomposed into a sum over scales: 

= ~ u(K)(x, y) 
K=O 

(2.5) 
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where for some 7 > 1, 

u(K)(x, y)~_. ( ~ ) 2 K _ _ A ) - I ( x  ' y ) _ _  (~)2K+2 ~ )  I (X ' y )  

1 ~ y) ( l 1 ) 
- (2~z)2  d2keik(x 72K~_ k2 72K+ 2 -}- k 2 

To state the theorems introduce connected parts by 

(2.6) 

(e--V(r ~ lq (e v(~'gJ)--l) (=1  i f N = l )  (2.7) 
G ~ connected /j E G 

graphs on { 1,2,...,N} 

It is well known that formally 

1 
l o g Z =  ~ -~.fdNtt(e v)~ (2.8) 

N = I  

and this is referred to as the Mayer expansion. See Ref. 7 or 8 for a proof. 
In the existing theorems (7) on the convergence of this expansion, the 
stabil!ty assumption: that there exists a constant B such that for all 
N,~I,...,~N, 

V(~x,..., ~U) > --BN (2.9) 

plays an essential role. The advantage (< of the iterated Mayer expansion is 
that this assumption can be replaced by the weaker assumption of stability 
at each scale: for each K =  0, 1, 2,... there exists B ('r) such that for all N, 

~l ..... ~x, 

V(K)(~ ~, ..., ~N) >i- -B(~:)N (2.10) 

B (~<K)= ~ B (i) 
i~K 

(2.11) 

Ilvll =s~p f dl#l ({')Iv({, {')] 

T h o o r e m  2.2. The Mayer expansion converges and equals log Z if 

llv(X)H e2B(<-,,<e 1 
K 0 

Furthermore, the Nth coefficient of the Mayer expansion is bounded by 

f d N ]~tl I(e v)cl ~ N N 2(Z Ilv(K)ll e2B(<~)) N-1 ,a(ff2) 

Define 
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C o r o l l a r y  2.3. For  the Yukawa gas (Example 2.1) with f l < 4 u  

f d NI/~l r (e-W)~l<21AlN u 21zlU 2--f l / (Zu)J  

where IAI = vol (A). Thus the Mayer expansion converges provided 

f l < 4 u  and 2 Izl/~ 1 -  < e  - l  

Proposition 2.4: 

I(e w(el' 'eN)cl ~ ~ 1-[ Iv(K~)(~,, ~x)l 
/',K ~ T  

T is summed over all tree graphs on { 1, 2,..., N}, K = (K~)~ r is summed 
over all assignments of integers to the lines • in T and N(K)(T~ K) is the 
number of particles which are met by lines ~ �9 T with K o. >>. K. 

If the interactions v (K) are ordered so that the smallest interactions v (~) 
are when K is large then factors exp(B(K)N (m) with N (x~ large can be 
matched against small v (m factors. This idea, introduced in Ref. 5, is how 
this estimate can improve over older methods. !7'8) See the proof of 
Theorem 2.2 in Section 3. 

1 b/ Given any interaction U=~Y~i#/ ~i and parameters s~j-sj i �9  [0, 1] 
define 

1 
U(s )=~  ~ suu U (2.12) 

i ~ j  

If U is stable, stability is not, in general, inherited by U(s). We say U(s) is a 
convex decoupling of U if U(s) is a convex combination of potentials of the 
form Z U(Y~) where { Y~ ..... Y~} is a partition of {1, 2,..., N} into disjoint 
subsets and U(Y) = �89 Zi~j,i,j~ Y u~. We refer to U(Y) as U restricted to par- 
ticles in Y. If U satisfies a stability bound, convex decouplings inherit the 
same bound. 

Returning to V as given in (2.3) define 

1 
V(s) = -~ ~ V(X)(s (K)) (2.13) 

with s (K) = (s~ K)) and say that V(s) is a convex decoupling of  V if V(K)(S (x)) 
is a convex decoupling of V (x) for each K. 
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Given a tree graph T and an assignment K, define for each particle i 

Ki(T , K) = sup{K,k lk in Tmeets i} (2.14) 

T h e o r e m  2.5. Let J be a positive integer. For  each tree graph T on 
{ 1 ..... N} and each K = (Ko),j= r, 0 ~< K,j ~ J, there is a probability measure 

(s(K)~ such that for all V given as a sum over K<<.Jas in (2.3) dPr.K(s), s = ,  ,~ ,, 

(a) (e V(r162 = ~ 1--[ [ --V(m)(~-i' ~J)] f dPT, K(S) e V(~l,...,~_ N,s) 

T, K ij~ T 

(b) dPrK is supported on convex decouplings of V. 

(e~ = 0 for all (c) For all s in the support of dPr,~ and each i6 { 1,..., N}, s o 
j if K>K~(T, K). 

Part (c) is an important part of this theorem. See the comment after 
Proposition 2.4. 

3. PROOFS A S S U M I N G  T H E O R E M  2.5 

Proof of  Proposition 2.4. Property (c) in Theorem 2.5 means that 
for a given pair T, K the particles not in the set 

y(K)= {i: K <, KI( T , K)} (3.1) 

are decoupled from each other and all other particles, as far as v (K) interac- 
tions are concerned. Thus, without changing anything, we can restrict 
v(K)(s) to y(K): 

1 1 

i ~ j  i, j t ~ K )  

This means that V(X)(s) is a convex decoupling of V/m restricted to y(*:/ 
and so the stability bound for V (K) implies 

g('~)(s) >1 _ B  ~. I y~K~l 

= --B(K)N(K)(T, K) 

Proposition (2.4) now follows from Theorem 2.5, part (a). 1 

Proof of  rheorom 2.2. Fix T, K. Every particle in the set y(K~ 



430 Brydges 

defined in (3.1) is met by a line l in T with Kt~> K, thus there are, at most, 
twice as many particles in y(m as there are such lines. This implies 

exp(B(K)N(m(T, K)) ~< [ I  exp(2B(m) 
i jc T, Kij>~ K 

We apply this inequality for K = 0 ,  1, 2 .... in the right-hand side of 
Proposition 2.4 and find 

I(e-~)cl ~< ~ [I [IvbK~)l exp(2B(~X~))] 
T,K /J'~ T 

integrate both sides with respect to d I/~l (~l)...d I#l (IN) over if2 N bounding 
[by the norm (2.11)] integrals over ~i, at the ends of extreme branches of 
T and working inwards to obtain 

fdN# I(e v)cl ~< ~ [ I  [llv(K~)ll exp(2B(~Xu))] #(s 
T,K ij~ T 

Bring the K sum inside the product over 0"~ T. Since all tree graphs have 
N - 1  lines and there are, by Cayley's Theorem, N N-2 tree graphs, the 
bound in Theorem 2.2 is immediate. The convergence criterion follows 
from Sterling's theorem and the bound we have just proved applied to 
(2.8). | 

Proof of Corallary 2.3. From (2.6) 

u(X)(O) = (log 7)/(27z) 

which implies V (K) obeys a stability bound with 

log 7 
B(K)= fl 2-~- 

Also from (2.6) and the fact that u(~:)(x, y)~> 0, 

][V(K)II = 2flT-2K (1 - -~)  

The 2 is from the sum over charges _+ 1. The bound in Theorem 2.2 then 
says 

f dNIl*l I(e V)cI<~R]A[NN-ZIzIN 

[( l N1 • 2 1 - -  ~ 7 - 2 K e / 3 ( l ~  1) 

K = 0  
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which holds for all ? > 1 and the left-hand side is independent of 7. Take 
7 ~ 1 to obtain 

f dNl#l I(e 'ILl <<.2lAiN N-21zl m 

x ( 4 ~ f d k e - 2 k + ~ k )  N-1 

Corollary 2.3 is now immediate. | 

4. PROOF OF T H E O R E M  2.5 

Suppose U is given by 

1 
U =-~ ~ uij (uij = uji arbitrary) 

l<~i , j<~N 

and, as usual, U(s) is defined for s = (so.), sij ~ [0, 1 ] by replacing u o. by 
s,juij. In Ref. 9 [ e x p ( - U ) ] c  is represented as a sum over "ordered tree 
graphs" t/. The details of this representation are not needed for this paper 
except to notice that it says that to each ordinary tree graph T on { 1,..., N} 
is associated a measure dPT such that, for any U, 

(e v)c= ~ I-[ (--uij) fdPT(S)e-V(s) (=1  if N = I )  (4.1) (a) 
T ( j ~ T  

(b) dPT is supported on convex decouplings of U. 

Lornma 4.1. (Battle and Federbush(6( Any measures (dPr) satisfy- 
ing (a) for all U are probability measures. 

Proof (6~. Fix a tree graph T O and let U be the interaction given by 

uu=e  if ij'eTo 

= 0 otherwise 

Then (a) reads, after substituting in the definition of (e v),., 

[ I  (e Z - l ) =  H (--e) fdPTo e-v(s) 
ij ~ To ij E TO 

Divide both sides by •N--1 and take e--, 0. The result is ~ dPTo 1 = 1. II 
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The proof of Theorem 2.5 will be by induction beginning with the 
V (K) via Z~= V (K), L = J - 1 ,  interaction V (J) and passing to ZS=o L+I 

J -  2, J - -  3,..., 0. Equation (4.1) and Lemma 4.1 with U replaced by V (J) 
begin the induction. The inductive assumption at stage L is: to each tree 
graph T on {1,2 ..... N} and R=(K0)~ ~r with K o E { L + I , L + 2  ..... J} 
there is a probability measure dPT,~ -- dP (L~ such that for all interactions of 

- -  T , K  

the form V--F.L+~-- s V (x), V (K) an arbitrary two-body interaction, 

(a) 

(b) 
(c) 

(e-V)~ : 2 2 1~ ( - u ~  KU)) f dPv, Ke v(~, 
T K i j ~ T  

dPT, K is supported on convex decouplings of V. 

For all s in the support of dPT, K and for each 

i~ { 1,..., N}, s!m = 0Vj if K>sup{K,k  , lke  T, lk meets i} u 

Lemma 4.2 below will be used to accomplish the inductive step 
L --, L - 1. Theorem 2.6 is proved when L = -1.  

Given any partition H of {1,2 ..... N}, H =  {7~ ..... 7N}, define the 
interaction between the sets ~ ~ H induced by W as follows: 

where 

1 

7 " ; ' ~  H 
7 r )" 

v~, (4.2) 

i ~ y , j ~ , /  

For any 7 c { 1, 2,..., N} define W restricted to 7 by 

w( l =! 2 W 6 
2 i ~ j e y  

Lemma 4.2. 

(4.3) 

(4.4) 

Let U, W be interactions on particles { 1, 2,..., N}; then 

(e " - % = Z  g[ {(e 
H "/~H 

A proof of this Lemma is given at the end of this section. This Lemma is 
closely related to equations in Ref. 5 and of course Ref. 1. 

T h e  I n d u c t i v e  Step. In Lemma 4.2, we set 

J 

U= ~ V (K), W= V (L) (4.5) 
L + I  
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Equation (4.1) is used to rewrite the { e x p [ -  VV(H)] }~ factor appearing on 
the right-hand side in Lemma 4.2. The inductive hypothesis (a) is used to 
rewrite [ e x p ( - U ) ] ~  factors so as to obtain 

( Z Y FI (-v7 ( e x p [ -  U -  W ] ) ~ = ~  
H y e H  T o n y K f o r T i j ~ T  

• f dpr, K(s) e-V(~,s~ vr 

• [ [  (4.6) 
fonlq ~ '~f  

If some 7 ~ H has only one element, interpret the quantity inside ( ) as 1. 
The T sums unite into a sum over T1 ..... T, where T~ runs over all tree 
graphs on ?~, / / =  {~,..., ?,}. After substituting for each ~7'  using its 
definition (4.3), it is clear that the factors ~.~, provide all ways of linking 
T~ ..... T. to form a big tree graph T on { 1, 2,..., N}, i.e., the sums over T~, 
and the sums inside ~ factors unite to form one sum over all trees T on 
{1, 2 ..... N}. After this interpretation the sums over Kj ..... K. (one for each 
T~) unite to one sum over all ways of assigning K U with L + 1 ~< Kij ~< J to 
all lines /j e T with i, j in the same 7 ~ H. The remaining lines ij in T are 
from ~b factors and thus are w U= v~ L) lines. More precisely, for T fixed, 
(H, K 1 ..... K,)  is in 1:1 correspondence with (K~j), ije T, K~j=L,..., J. For 
example, given T and (K'J), H is recovered by erasing all lines 0 e  T with 
K U-- L and then the decomposition of the resulting disconnected tree graph 
into connected components T~,..., T~ specifies H =  {7~ ..... ?.} by setting 
7~ = set of particles linked by T~, i.e., 7~ e H. 

dP' 2 The dP probability measures in (4.6) unite into one measure r,K, 
and the interactions unite into ( U +  W)(s) = ZKJ = L VIm(s(m) �9 Thus 

T K i j E T  

(4.7) 

i.e., dP'r,K satisfies (a) of the inductive hypotheses with L replaced by L + 1. 
It is also clear from (4.6) that (b) with L replaced by L + 1 is satisfied. To 
check (c) note that (Case 1) for a particle i met by any line /j'~ T with 
K U > L, the inductive hypothesis for dP is already the hypothesis for dP'. 
(Case 2) If i is only met by zje T with K~ = L, then in (4.6) one of the fac- 
tors under the 7 product equals 1 because 7 has the form 7 = {i}, and so i 

2 Some conventions are needed: if i and j lie in the same subset of the partition, the dP' dis- 
tribution for s(L ~u is a point mass at s~ L)= 1. If i and j lie in different subsets and K> L the 
distribution s!K ) is a point mass at 0. t)  
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has no U interactions in the exponent. This is property (c) in this case. End 
of Induction and Proof of Theorem 2.6. 

Proof of Lemma 4.2. By the definition of ( )(. 

(e u w ) c = ~  I-] (e u,j w,J_l) 
G 8 ~ G  

= Z  H ((e " '~- l )e  ~"~+(C'~-I)) 
G 8 e G  

= ~, [I ( e - "~ - l )  e ~u 
Gu,Gw lie Gu 

x H (e wk,  1) (4.8) 
kl  ~ G~ 

G~, G~ are summed over all graphs on { 1,..., N} such that Gu c~ G~ = 
and G~uG~ is connected. G, decomposes into connected components 
G~,..., G, and {1, 2 ..... N} is partitioned b y / / =  {71 ..... 7~} where 7~= set of 
particles linked by G i. Thus 

(e-U-  w)c=E E H (e-"~-  1) ew'j 
17 Gl,...,GnOnyl,...,yn i jeGI 

l = 1,...,n 

x Z H (e ~k ,  1) (4.9) 
Gw kl �9 G~ 

The sum over G~ is also split into a sum over P~ ..... P~, R, where P~ are the 
lines in Gw which meet only particles in 7~, i= 1 ..... n and R is the rest of 
G~. For 7~, G~ fixed, the P's can be resummed using 

[ I  (e-W~'-- 1' = exp ( - - i  ~ Wk 0 (4.10) 
Pi k l~P i  k # l  

k,la 7i,kle~ Gi 

so (4.9) becomes 

(e E [I 
H GI,...,Gn ij~Gl 

l= l,...,n 

(e-"'~--1) [ I  e w(~.} 
y e n  

x E  I ] (e wk'-l) 
R k l ~ R  

Apply definition of [exp( - U)] c : 

=~, I~ (e-~{Y)), .e w{7) x ~  H (e-wk~-l) (4.11) 
H ? ~ H  R k l ~ R  
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R is summed  over all graphs  which consist  of lines kl with k e 7, l e T ' ,  
7 # 7 ' e  H. To each R is uniquely  assoc ia ted  a g raph  g(R)  on H =  {71,--., 7~} 
with lines 77' ob t a ined  by  kl--+ 77'. If 77' occurs several  t imes as an image  of 
k l E R ,  it  appears  in g once. Suppose  g(R)  is fixed equal  to {77'}, a g raph  
on H with only one line, then R can be r e summed  using 

Y', IF] ( e - ~ ' k ' -  1 ) =  ( e % r - 1 )  (4.12) 
R: g ( R ) =  { '~y ' }  k l e  R 

In general  g(R)  is a union of lines, so by tak ing  a p roduc t  of equa t ions  like 
the one above  

~, ~ (e - w k ' -  1 ) =  1~ (e < < _  1) (4.13) 
R: g(R)  = g k l ~  R 77'~ g 

On subs t i tu t ion  of  this into (4.11 ) and  using the def ini t ion of  [ e x p ( -  t~-)] c : 

^ 

g o n H  "2Y'eg 
c o n n e c t e d  

we ob ta in  the conclus ion  of L e m m a  4.2. | 
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